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In the absence of an obvious reference place, rat locomotor behavior in a novel environment appears haphazard. In previous work, one or 
two places termed home bases, were shown to stand out from all the other places in the environment in terms of the behaviors performed in 
them and in terms of their behavioral stability. We use home base location as a reference place for rat movement in locale space, by defining 
an excursion as a trip starting at a home base and ending at the next stop at a home base. We then establish the uniform distribution as an 
appropriate model for the number of stops per excursion. This way we show that there is an intrinsic upper bound on the number of times a 
rat stops during an excursion. As a rat leaves the home base, home base attraction increases with every additional stop performed by it, first 
slowly and then fast. This cumulative process of attraction may be concluded after each stop, as long as the number of stops does not exceed 
an intrinsic upper bound; once the upper bound is reached, the rat concludes that excursion and returns to base. The session's upper bound 
does not increase with the size of the explored area. 

I N T R O D U C T I O N  

When placed in a novel environment, a rat alternates 
between progressing and stopping: it Iocomotes for- 
ward, stops, performs horizontal and/or vertical scan- 
ning movements while staying in place, locomotes 
again, stops in a new place, etc. In the absence of an 
obvious reference place in relation to which the ob- 
server can quantify progressing and stopping, the rat 
appears to stop haphazardly, showing little regularity 
in its stopping behavior. Perhaps because of this, re- 
searchers who described patterns of rat progression in 
the open field ignored stopping and recorded only the 
paths traced by the rat. When such paths are repre- 
sented on paper or on computer s c r e e n  4"6-8"14"15, they 
provide important general properties of the patterning 
of rat routes. For instance, they represent the ratio 
between progression along edges and across the center 
region of the field, the degree of stereotypy indicated by 
the amount of repetition of the same paths s't2, and the 
relative smoothness of the rat's locomotor path TM. In 
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the absence of natural 'punctuators', however - -  nat- 
ural in the sense that they are presumably used by the 
rats themselves - -  the rats appear to perform a long 
unpartitioned sequence of  progressions and stops that 
starts and ends with the session. 

The aim of the present study is to offer a quantita- 
tive model for rat spontaneous locomotor behavior in 
a novel environment. To establish such model we first 
identify a reference place presumably used by rats dur- 
ing their movement in locale space, then isolate mea- 
surable quantities of  rat movement and measure them 
in reference to that place. An appropriate model should 
both predict the observed regularity in the measured 
quantity and support the initial choice of a reference 
place. 

When a rat explores a novel environment there are 
one or two places where it stays for a significantly longer 
cumulative time than in all the other places, and where 
it typically stops for the highest number of times. In this 
place, the values of these measures are of a higher order 
ofmagnitttde compared to the respective values scored 
in all the other places. In it, the rat also shows a high 
and often the highest incidence of grooming, signifi- 
cantly higher in proportion, compared to that expected 
by the proportion of time spent there. Finally, this place 
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is also marked by the highest incidence of rearing, and 
by crouching and pivoting around the forelegs, two 
behaviors which are exclusive for this place. This place 
which can be readily identified by any observer using 
the above criteria, has been termed a home base 3. 

From the home base the rat performs excursions into 
the environment. Excursions consist of round trips 
which start and end at the same home base, and, in the 
case ofrats which establish two home bases, trips which 
start at one base and end in the other. There have been 
several allusions in the literature to the fact that in a 
novel environment animals repeatedly perform excur- 
sions which start and end in their home base 1'2'9'! 1,13,16, 
but there has been no systematic examination of  the 
constraints imposed on locomotor behavior during such 
excursions. 

The partitioning of the rat's path into intervals of 
forward progression and intervals of stopping and stay- 
ing in place 6ffers several measurable quantities, such 
as the numbe? of stops per excursion, the distance tra- 
versed during inter-stop intervals, excursion time, etc. 
Any of these quantifies could be controlled, and in this 
sense could shape the excursion. In looking for a mea- 
surable quantity that would yield regularity, we had the 
impression that the number of  stops performed by a rat 
during an excursion had an upper bound. Our initial 
attempts to increase the upper bound, by increasing the 
size of  the area explored, revealed both faces of a phe- 
nomenon: while the upper bounds do vary from the 
session of one rat to that of another, they are not 'in- 
creasable' (on average). This suggested some form of 
active management of stopping behavior. 

Based on this observation, we searched for a quan- 
titative model that would represent stopping in refer- 
ence to the home base, and predict a rat's likelihood of  
terminating an excursion and returning to base. In par- 
ticular, the apparent upper bound on the number of  
stops could reflect, for example, a typical upper limit 
with data clustering about it on both sides. Alterna- 
tively, it could be an artifact of  a memoryless behavior 
in which the rat's decision whether to make additional 
stops or return to base is taken randomly, at a fixed, 
relatively high probability, regardless of the number of 
stops already performed. In such case the probability 
that the number of stops will exceed a certain large 
value is negligible~ thus creating the false impression of 
an upper bound. Finally, the upper bound could be an 
intrinsic one, implying that the decision to return to 
base after a stop depends on the number of  stops al- 
ready performed after leaving the base, and in this sense 
entails some form of memory. Note, that all three mod- 
els predict the form of the distribution in a session, 
regardless of the question whether the values of  the 

upper bound are session-specific, individual-specific, or 
species-specific. 

The establishment of  any model other than the mem- 
oryless one as appropriate would support stopping as 
a kinematic quantity indicating some form of measure- 
ment performed by the rat in reference to the home 
base, validate stops at the home base as the natural 
sutures between excursions, and demarcate excursions 
as elementary processes of organized locomotor behav- 
ior in a novel environment. The establishment of a 
specific model out of the three, will characterize the 
attraction exerted on the rat by the home base: is it 
equally attracted to base throughout its movement in 
the environment? is it attracted to base only after per- 
forming a typical number of stops? or does attraction 
increase in the course of  an excursion? 

MATERIALS AND METHODS 

In the first part of this study we examine stopping 
behavior during spontaneous locomotor activity of 
tamed wild rats on a small glass platform. In the sec- 
ond part we ask whether the maximal number of  stops 
per excursion, established on the glass platform, merely 
reflects the size of  the testing platform or else expresses 
a more general intrinsic property of rat stopping be- 
havior. To answer this question, we present data on an 
additional group of laboratory Long-Evans hooded 
rats tested in small and large outdoor yards. 

Wild rats on glass platform 

Details on the tamed wild rats, the structure of  the 
testing environment and the procedures of  data acqui- 
sition and data analysis were described elsewhere, as 
were the rationale for the structure of the testing envi- 
ronment, and for the use of wild rats 3. Following are a 
brief summary of methods and some additional neces- 
sary detail. 

Anhnals 
Fourteen male and 11 female tamed wild rats (Rat- 

tus norvegictts), born to rats caught in the wild or to first 
generation rats raised in captivity were maintained in- 
dividually in 60 x 50 x 40 cm cages, on a 14-h light/10 h 
dark cycle (lights on 6 a.m.). Recording sessions took 
place at the age of 4-12  months (rats weighed 250-  
400 g). Food and water were provided ad lib. 

Observation platform 
The testing platform was a glass table (160 x 160 cm 

and 100 cm high), without walls, placed 60 cm away 



from 4 walls, each of a different color and texture. A 
mirror tilted at an angle of a few degrees below the glass 
top allowed a video camera to capture simultaneously 
bottom and side views of the rat. To record the places 
of stopping, the platform was divided into 25 square 
areas 3. Videotaping of rats was performed under arti- 
ficial lights from behind a curtain. Only the camera lens 
was visible to the rats. 

Small vs. large yard 

Anhnals 
Sixteen naive hooded rats, 8 males and 8 females, 

(Dept. of  Animal Breeding, Weizmann Institute of Sci- 
ence, Israel) weighing 250-350 g were used. The ani- 
mals were housed in small groups. All other housing 
conditions were similar to those described for the wild 
rats. 

Observation.yards 
Small (2 x 2 m) and large (8 x 8 m) outdoor yards 

with soil floor were each surrounded by a 70-cm high 
wall. Walls were constructed of plywood. The yards 
contained sparse low grass and stones. To record the 
places of  stopping the yards were schematically divided 
into 25 squares. Each square in the large yard was 
subdivided into 9 smaller squares. 3-Iowever, this sub- 
division was not used unless the rat stopped in the same 
larger square successively more than once (see section 
on behavioral analysis). Videotaping was performed 
under natural daylight. 

General 

Procedure . 
Each of the rats was placed in tile centre of the 

testing area and its behavior videotaped for an hour on 
the glass platform, and for half an hour in the outdoor 
yards. A video camera lens with a 8 x zoom ratio al- 
lowed sufficient visual access to behavioral detail in the 
two small environments, and a tele conversion lens with 
a 1.5 • magnification was added in the large yard. Vid- 
eotaping took place during daytime (8 a.m.-5 p.m.). 
Wild rats were tested only once, on the glass platform. 
Hooded rats were tested twice: 8 were tested first in the 
small, and a week later in the large outdoor yard, and 
8 were tested first in the large, and a week later in the 
small yard. 

Behavioral analysis 
When placed in the testing environment a rat alter- 

nates between progressing (i.e. fonvard walking or run- 
ning) and stopping: it progresses forward, then stops by 
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performing so-called closing steps (in which tile step- 
ping leg lands besides the contralateral leg instead of  
landing ahead of it), then freezes and/or performs hor- 
izontal and/or vertical scanning movements while stay- 
ing in place. During staying in place it may perform 
sideways and/or backward steps or steps in place, with 
each of its legs, and may even step fo~vard for one or 
two steps. Then it resumes forward progression, stops 
in a new place, etc. In intact rats, forward progression 
and scanning movements are always separated in time. 
In the present study, forward progression was recorded 
as such whenever the rat performed more than two 
successive forward steps with the same hindleg (more 
than two successive cycles of all four legs). Stopping 
was recorded whenever the rat ceased to progress for- 
ward and froze in place, or ceased to progress forward 
and performed lateral and/or vertical scanning move- 
ments with any or all of the parts of its trunk while 
staying in place. The rare instances in which the rat 
ceased to progress fonvard, stayed in place, then per- 
formed two forward steps and stopped again, etc., were 
recorded as one stop. Instances in which a forward 
progressing rat turned its whole trunk smoothly in a 
new direction and commenced to progress forward 
(without first performing a lateral head (and/or chest) 
movement in the opposite direction) were not scored as 
stopping even if the hindlegs did not step during turn- 
ing. 

Time-coded videotapes of rat behavior were dis- 
played on screen at a desired low speed, and the places 
where the rat stopped were coded using custom pro- 
grams that allowed the computer keyboard to serve as 
an event recorder. Whenever stopping behavior fulfill- 
ing any of the above criteria was observed, the observer 
pressed a key representing the stopping area. The same 
key was pressed again when the rat left the place. In the 
large yard, the subdivision into smaller squares was 
used only if the rat stopped successively more than 
once in the same larger square (based on the division 
into 25 squares). The sequence of stops, their duration, 
frequencies of  stops in particular places, and cumula- 
tive durations of staying in each place were calculated. 
Videotapes were then replayed in slow motion and the 
occurrence of  grooming and rearing were recorded for 
each of the places. The entire session was coded for 
each rat. Data were added cunmlatively for each rat, for 
each place, to obtain the total amount of time spent in 
it during the session, and the incidence (total number 
per session) of grooming, of  rearing, and of stops per 
place. Based on these cumulative records, and follow- 
ing the procedure described in ref. 3 (see also present 
introduction), each rat's home base locations were es- 
tablished. Some of the rats were found to have only one 
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home base, others were found to have two. A normal 
rat was hardly ever observed by us to Iocomote through 
a home base without stopping there. Therefore, in the 
present study, visits to base imply stopping at base. 
Since presence in other places was not recorded unless 
the rat stopped there, visits to places and stops are used 
interchangeably and mean the same. 

Once home base locations were established, visits to 
a home base were used to divide the sequence of all 
stops performed in the session into smaller sequences 
called excursions. Each excursion starts immediately 
after leaving the home base, and ends just before stop- 
ping again at base. The initial and final stops at the base 
are not included in counting the number of stops per 
excursion. The sequence of all stops performed in the 
session is thus represented in terms of excursions, sep- 
arated front each other by stops at a home base. Ex- 
cursions are classified as 'round trips" - -  excursions that 
start and end':at the same base ~ and 'excursions be- 
tween 2 different bases'. The expression 'excursion s&e' 
refers to the number of stops per excursion, as opposed 
to 'excursion length' which refcrs to the distance tra- 
versed. 

Statistical methods 
The probability distribution of the number of stops 

per excursion was investigated using histograms, den- 
sity estimators, and quantile plots. 

The histogram. This is the simplest means to describe 
the relative concentration of observations along differ- 
ent sections of the stops per excursion scale - -  the 
probability density. In the histogram the scale is divided 
to equal-size non-overlapping bins, and the density for 
each point in the bin is estimated by a constant: the 
number of observations which fell in the bin divided by 
the total number ofobservations and further divided by 
the bin length. The result is displayed using bars, but 
if we examine the estimated densities alone, it shows 
discontinuities where one bin cnds and its neighbour 
starts. Furthermore, the estinaate of the densities has 
other statistical disadvantages closer to the boundaries 
between bins. 

Density esthnators. To overcome these problems it is 
common to estimate the density at a specific point by 
constructing a bin centered around the point. As we 
move from one point to the other over a fine grid, the 
centered bin moves as well. Furthermore, different 
weights are assigned to the points in the bin, those 
closer to the point where the density is estimated get- 
ting higher weights. The resulting smooth presentation 
of the histogram has good statistical properties as an 
estimator of the probability density function (see for 
example, ref. 17). 

The quantile plot. This describes each observed value 
against its rank. For example, suppose that the number 
of stops recorded in successive excursions of the same 
session are 2,10,3,7,9,7,9,1,5. We first sort them and 
rank them accordingly, the first lowest gets 1 and, in 
this example, the last largest gets 9. The quantile plot 
displays for each excursion its number of stops on the 
vertical axis and its rank on the horizontal axis. (The 
quantile plot for this sample data is the M29 panel in 
Fig. 2). Note that each rank when divided by the num- 
ber of excursions recorded in a session, represents the 
fraction of the excursions having values smaller or equal 
to its observed excursion value (in M29, for example, 
1/9 of the excursions included 1 or fewer stops, 2/9 
included 2 or fewer stops, and 4/9 included 5 or fewer 
stops). Thus, if the observations are from a uniform 
distribution, the intervals between consecutive observa- 
tions, after ordering them, are expected to be constant 
regardless of their location. Under such circumstances, 
the quantile plot should exhibit a linear relationship. 
The linearity is an evidence of the appropriateness of 
the uniform probability model. 

Assessment oflineariO,. To judge the quality of fit to 
a uniform model the usual methods of judging the fit to 
a line cannot be used, and inference should rely on a 
confidence band which can be superimposed on the 
plot, helping to judge the deviation from linearity. This 
is accomplished by using Kolmogorov's distribution of 
the maximal deviation, which results in a tolerance band 
about the diagonal of the quantile plot ( + 0.08 to + 0.12 
in our examples of pooled data). We shall omit the 
details of the construction and remark that when try- 
ing to show that some model is appropriate, merely 
showing that the model cannot be rejected at some 
usual level, say 0.05, is not a strong enough evidence, 
and the visual check for linearity is usually more strin- 
gent. 

The esthnation of  the upper limits on the number of 
stops. Having a sample of size n from a uniform distri- 
bution over the unknown range [O,R] (meaning that the 
population ranges between zero and an unknown max- 
imal value R), we may use the k-th largest of  the n 
observations to estimate R. Howevcr, the expected 
value of the largest of a sample o fn  observations from 
a uniform distribution is smaller than R, namely, (n/ 
n+  1)R. (Again, the 9 observations of the sample in 
M29, when uniformly spread over the range 0 to R, are 
expected to divide this range to 10 intervals of equal 
length; the estimated maximum R should therefore lie 
to the right of the ninth largest observation at a distance 
of one such interval length.) An unbiased estimator of 
the range R is, therefore, the k-th largest observation 
times the inflating factor (n + 1)/n. (In our example this 



would give an estimate of 11.1.) This estimator, how- 
ever, is extremely sensitive to small deviations from the 
uniform distribution. An example of such a deviation, 
which is prone to arise realistically, can be produced by 
a single failure to identify a stop at a home base. This 
might create a seemingly long excursion, consisting in 
fact of two successive excursions. Not only will R be 
overestimated in this case, but the distribution will not 
appear uniform. As a remedy, we use a more resistant 
estimator ofthe maximum, based on the estimated 90% 
percentile of the observations, rescaled by the factor 
10/9. (Alternatively, the estimates based on the 70% 
and 80% percentile were also used, and gave similar 
results.) 

Side-by-side boxplots displays 1~ They were used to 
display the estimates of the maximal number of stops 
for the three types of excursions: round trips in single 
base rats, round trips in double base rats, and excur- 
sions between b~ases in double base rats. The maximal 
values were disi~layed for the glass platform (Fig. 7), 
and for the two outdoor yards (Fig. 8). The boxplot 
displays graphically, numerical summaries of groups of 
observations. The box is plotted by drawing its bottom 
and top at the 25% and 75% percentiles respectively 
of the data, and thus contains the central half of the 
data; the box is cut by a line whose height is that of  the 
median of the data; two whiskers extend from the top 
and the bottom of the box to the farthest observations 
that are still no more than two box lengths away from 
the sides of the box; observations outside this range are 
plotted individually. The boxplot displays are used to 
study and compare the location, spread, and shape of 
the distribution of the estimated upper limits. The 
notches in the boxes give approximate 95 % confidence 
intervals for the comparisons of medians. If two sets of  
notches are non-overlapping, their corresponding me- 
dians are significantly different. 

The significance of the difference between the esti- 
mated upper limits for round trips, and for excursions 
between bases for the two-base rats, is further deter- 
mined by the Wilcoxon signed rank and rank sum tests, 
depending on whether the excursion of the same or 
different rats were compared. 

RESULTS 

Nzmzber of  stops per excursion on the glass platfomz 

One-base rats 
One-base rats establish a home base within the first 

few minutes of the session by staying there for extended 
periods of time, grooming, etc. (see Introduction and 
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ref. 3). They then keep visiting (stopping in) this place, 
finally settling in it for the rest of the session. Accord- 
ing to our definition, a round trip starts upon leaving 
base and ends upon re-entering it, initial and final stops 
at base excluded. 

Fig. 1 presents the frequency distribution of the num- 
ber of stops per round trip in individual rats that es- 
tablished only one such home base in the course of the 
1 hour session. We shall first study this frequency dis- 
tribution in rat F13 (Fig. 1): its mean number of stops 
is 4.6, its median is 5, and the maximum number of 
stops per round trip is 8. It is clear from the histogram 
that there is no clustering of the observations about this 
maximum, but the number of stops observed spans the 
entire range from I to 8. Nor is there a trailing tail of  
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Fig. 1. Frequency distribution of the number of stops per round trip 
in individual one-base rats. 
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ever decreasing frequencies which would suggest a geo- 
metric model for the distribution. In fact, this histogram 
of FI3 suggests that an appropriate model for the dis- 
tribution of the number of stops per round trip in this 
rat's session should assign equal probability to any ex- 
cursion size over the range of sizes observed in this rat. 
We are thus led to a closer inspection of the uniform 
distribution as a model. 

The appropriateness of the uniform distribution 
model to the data is judged by using a quantile plot. In 
such plot, the excursions are ordered according to the 
number of stops included in them (y axis), vs. their rank 
(x axis; see Materials and Methods section). It can be 
seen that in Fig. 2, which is the quantile plot for the data 
in Fig. 1, the points corresponding to the number of 
stops of rat F13 tend to cluster along a straight line 
as expected when the model is appropriate. 

The rest of  the subfigures in Figs. 1 and 2 present 
similar histog'rams and quantile plots individually, for 
each of the other one-base rats. The first observation is 
that the uniform distribution model appears to be quite 
appropriate for most rats. The second observation is 
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that the recorded maxima vary considerably across rats 
(range: 6-12 stops). 

As to the first observation, the fit might not look as 
good as the extraordinary fit of F13, but the quantile 
plots are pretty linear and the histograms constant, 
when taking into consideration such small samples 
(even for M30, which might look the furthest from uni- 
form, the data are consistent with a uniform model). 
But this is not enough evidence to infer about the dis- 
tribution of the number of stops. As an extreme exam- 
ple, M12 has only two points so that a straight line 
would be the best fit here, but also for any other prob- 
ability model. The linearity of the quantile plots of  in- 
dividual rats could not be assessed by using tolerance 
bands (see Materials and Methods), because they were 
extremely wide for such small samples, and therefore 
not informative. It can be assessed stringently, how- 
ever, with large samples of data. Thus, the only way to 
support or refute the emerging uniform distribution, as 
a model for the number of stops per excursion per- 
formed in a session, is by pooling together the data from 
all rats together. 

Here enters a difficulty in pooling the individual dis- 
tributions. The wide range in the maxima implies that 
the number of stops per round trip is uniform over 
different ranges for different rats. Rat M24, for exam- 
ple, shows a good fit over the range of 1-15 stops per 
round trip; according to a uniform model over this 
range, the probability of, e.g., all 14 round trips of rat 
F25 ending with no more than 8 stops per trip is ex- 
tremely small - -  0.00015. Such an hypothesis should 
be clearly rejected. 

To overcome these difficulties we normalize the data 
for each of the rats over the same range and then pool 
all the rats (sessions) together�9 The normalized range 
extends between 0 and 1 and expresses the number of 
stops in an excursion belonging to a specific session as 
a proportion of that session's upper limit. Because this 
upper limit is unknown, we estimate it (see Materials 
and Methods). 

We thus model the number of stops per round trip 
of the i-th rat by a uniform distribution over the range 
[O,Ri], Ri expressing the individually maximal size of a 
round trip in the specific session. 

If Ri is known, each observation t,j about the num- 
ber of stops which rat i makes at the j-th excursion can 
be normalized by n o = to./R ~. The normalized number of 
stops per excursion n v now presents the number of 
stops at excursion j of rat i as a proportion (between 
0 and 1) of the (unknown) upper limit on the excursion 
size of this rat at this session. If the original t o are 
uniformly distributed over [O,Rt], the normalized ones 
are uniformly distributed over [0,I ] for the entire group 



cq. 

o00 

x 

_>, -r 

~2 
Q 

0 
c5 i 

0'.0 0.4 0.8 
Number of Stops / rat's maximum 

Fig. 3. Histogram and estimated density function of the pooled data 
on number of stops per round trip in one-base rats divided by the rat 

session's estimated maximum (ratio< 1). 

of rats. Therefore, all the observations across the dif- 
ferent sessions of  the different rats may be pooled to- 
gether, and it is .possible to check the appropriateness 
of  the model usihg the entire data set. Because the R~'s 
are not known, ~,ve use their estimates in order to nor- 
malize the excursion sizes. Fig. 3 displays the histo- 
gram and the estimated density function from the 
pooled data. It can be Observed that the estimated den- 
sity is quite constant, as predicted by the uniform dis- 
tribution model. Fig. 4 displays the corresponding 
quantile plot, which is fairly straight (see 'assessment of  
linearity' in the statistical methods section). The only 
noticeable deviation from the model is towards the low 
end. The reason is that the smallest number of stops in 
a round trip is one, zero having never been observed in 
normal one-base rats. This gives the rise at the bottom 
left, at values less than 0.1. 

T w o - b a s e  ra t s  

We may now study the behavior of rats that estab- 
lished two bases in the course of  the hour. In such rats 
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the bases are distant from each other. Some of the rats 
visited repeatedly one base without approaching the 
other for an extended period of  time, then transfered 
their activity to the second base which was then visited 
repeatedly without visiting the first base, etc. In such 
rats, bouts of  round trips in relation to one base were 
separated in time from similar bouts performed in re- 
lation to the other base. These bouts were intercon- 
nected by occasional excursions between bases. In 
other rats, round trips and excursions between bases 
intermingled sporadically throughout the session. 

Fig. 5 is the histogram of the number of stops per 
(any type of) excursion in one such rat - -  M27. The 
mean number of stops per excursion for this rat is 3.6, 
the median is 3, and the maximum is 11. The overall 
height of the bars in the histogram suggests that the 
uniform distribution is not the right model for the be- 
havior of this rat. In particular, note the hump at the 
smaller numbers, evident in the histogram. 

In order to try and reveal the source of the deviation 
from the uniform model, we have divided the excur- 
sions into round trips and excursions between bases. 
Going back to rat M27, we observe that the means, 
medians, and maxima for the 2 types of excursions 
differ, the summaries for excursions between different 
bases showing a smaller number of stops: 4.4 vs. 3 for 
the means, 3 vs. 2 for the medians, and 11 vs. 6 for the 
maxima. Thus, it was decided to examine the distribu- 
tion of  each subset of excursion types separately. To do 
so, we define 

R ~ as the estimated maximum of round trips in a spe- 
cific session (s for 'single'), and 

R a as the estimated maximum of excursions between 
bases in that same session (d for 'double'). 

Note, that if in fact the distribution of the number of  
stops per round trip is uniform over the interval from 
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Fig. 5. Frequency distribution of the number of stops per excursion 
in a specific two-base rat --  M27. 
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0 to the round trip session's maximum R ~, and if the 
distribution for excursions between bases is uniform 
over a shorter  interval, from 0 to the excursions be- 
tween bases session's maximum R a, then mixing the 2 
types together will yield a distribution whose density is 
higher from 0 to R a then the remainder  from R a to R s. 
this could explain the source of  apparent  deviation from 
the uniform distribution model,  in the rats which es- 
tablished 2 bases in the course o f  the hour. 

Therefore,  for each �9 these rats, 2 session maxima 
were estimated: R a and R ~. The  data  across rats were 
then pooled separately for round trips and for excur- 
sions between bases. Fig. 6a shows the estimated den- 
sity curve for round trips superimposed on the histo- 
gram, as well as the quantile plot for two-base rats. 
Fig. 6b is its equivalent for the subset of  excursions 
between bases. The fit is better for the excursions be- 
tween bases than for the round trips. In both cases, one 
source oflacl~ of  fit is in the highest 20% of  the obser- 
vations, where the rightmost part  of  the density func- 
tion o f  excursion sizes trails off  rather than descending 
abruptly to 0 as  predicted by the uniform model.  This 
can be seen in the density estimate of  the combined set 
o f  observat ions and also, to some extent, in the distri- 
bution of  individual rats. In the distribution of  round 
trip size only, a further peak is noticeable, caused by 
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Fig. 6. a: histogram density function and quantile plot of the pooled 
data on number of stops per round trip divided by the rat session's 
estimated maximum (ratio< !) in two-base rats. b: histogram density 
function and quantile plot of the pooled data on number of stops per 
excursion between bases divided by the rat session's estimated max- 

imum (ratio< 1) in two-base rats. 

many short excursions and none of size 0. It may be 
concluded, that the uniform distribution model can be 
used as a reasonable first approximation of  the number 
of stops per excursion also in rats with 2 bases, after 
it is enriched with an additional parameter D that of 
the individual session's maximal range of excursions 
between bases - -  for each such rat. 

Maxhnal number of  stops per excursion 
Since the maximal number  of  stops per excursion is 

an individual parameter  characterizing the behavior  of  
the individual rat  in a specific session, it is of  interest 
to examine the distribution of  this parameter  among the 
rats (2 parameters  in the case o f  the 2 base rats). Prac- 
tically, all we can study is the estimates o f  the R-s. 

Fig. 7 presents side-by-side boxplots of  the R,.-s for 
the single base group and the R~-s and Ra-s for the 
double base group. These  distributions are quite sym- 
metric. The  median maximal size estimate is 9.6 among 
the round trips o f  the one-base rats, 8.2 among the 
round trips of  the two-base rats, and 6.9 among the 
excursions between bases o f  the two-base rats. Fur- 
thermore,  it can be seen in Fig. 7 that the difference in 
the upper  limits between the round trips in one-base 
rats and the excursions between bases in two-base rats 
is significant (P-value < 0.001). The difference between 
round trips and excursions between-bases in the two- 
base rats, although not  significant (P-value = 0.062) is 
of  the same magnitude as the difference between the 
two types of  round trips. 
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Fig. 7. Side-by-side notched boxplots of the estimated maximal 
number of stops on the glass platform, in: Round trips in one-base 
rats (left), round trips in two-base rats (middle), and excursions be- 
tween bases in two-base rats (right)�9 The range between the bottom 
and top of the box contains the central half of the data; the box is 
cut by a line whose height is that of the median of the data; two 
whiskcrs extend from the top and the bottom of the box to the far- 
thest observations that are still no more than two box lengths away 
from the sides of the box. The notches in the boxes give approximate 
95% confidence intervals for the comparisons of medians. If two sets 
of notches are non-overlapping, their corresponding medians are 
significantly different. Thus the difference between the medians for 
IBr and 2Bd is significant while the difference between 2Br and the 

other two are not. For further explanation see methods section. 



The effect o f  excttrsion length on the upper limits on stops 

The low values of the upper limits on the number of 
stops per excursion could merely reflect the (high) prob- 
ability of bumping into a home base on the small glass 
platform. To exanaine whether increasing the size of the 
environment would increase the upper limits, an addi- 
tional population, this time of laboratory rats, was 
tested, each rat being tested both in a small and a large 
yard (see methods). 

Three types of excursions in each of the two yards 
form six groups. Summarizing the estimated maxima of 
each type of excursion in both yards, by medians, pro- 
vides the following results: the median estimated max- 
imal round trip for one-base rats is 7.5 stops on the 
large yard and 14 on the small yard (groups L1 and S 1 
in Fig. 8). Similarly, for two-base rat round trips, the 
medians are 9 on the large, and 10 on the small yard 
(L2r and S2r ir~ Fig. 8). For excursions between bases 
the medians are 9.5 on the large, and 7.5 on the small 
yard (L2d and S2d in Fig. 8). We see that contrary to 
our concern, in two of the three comparisons the me- 
dians for round trips in the large yard were in fact lower 
than the respective medians in the small yard, and for 
the S l -L1 comparison this was even almost significant 
(the only significant difference being between two types 
of excursions in the small yard) (Fig. 8). It is thus ev- 
ident that an increase in the size of the testing environ- 
ment does not induce an increase in the upper limits on 
the number of stops per excursion. 

Could the medians of the upper limits on stops be 
similar in the two environments merely because rats 
actually explored only a small portion of the large yard, 

Lt -$1 L2r S2rL2dS2d 

Fig. 8. Side-by-side notched boxplots of the estimated rats maxima 
for the large and small yards. Single base rats on large yard L1; 
Round trips of two-base rats on large yard L2r, on small yard S2r; 
Excursions between different bases on large yard L2d, on small yard 
S2d. For explanation of plots see legend for Fig. 7. Based on the 
degree of overlap between the notches, the only significant difference 
in this plot is between SI and S2d. Note that the medians of Ll and 

L2r are smaller than the respective medians in the smaller yard. 
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similar in area to that explored in the small yard? Fig. 9 
presents the farthest round trips per session, in terms 
of the portion of the perimeter of the yard traversed, in 
one-base rats in both yards. While the average portion 
of the perimeter covered during maximal excursions in 
the small yard is 9.1 m, the corresponding value in the 
large yard is 22.9 m (P-value<0.0001). The difference 
between the two yards is also reflected in the average 
interstop distance, which is about 2.5 times larger in the 
large yard (3.1 m vs. 1.3 m). 

In both yards, the farthest round trips are spread out, 
covering a large proportion of the perimeter of the re- 
spective yards. The ratio between the average distances 
covered during farthest round trips in the two yards is, 
however, much smaller than tile ratio between the re- 
spective full perimeters of the yards (2.5 vs. 4). In other 
words, the increase in the maximal distance traversed 
by the rat, which was induced by the large yard, was not 
as large as the difference in the respective perimeters. 
The large yard was thus covered differently than the 
small yard. Still, the upper limits on the number of 
stops did not increase. It appears, therefore, that the 
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Fig. 9. Farthest round trips (in terms of the area explored), per- 
formed by one-base rats in the small and large outdoor yards. Each 
square represents the yard with a trace of the round trip in which the 
rat traveled along the longest portion of the perimeter of the yard in 
a session. Circles represent stops. As shown, during such trips rats 
cover large portions of both the small and large yards. Thus, the 
similarity in the upper limits on the number of stops in the two yards 

does not reflect a similarity in the area explored by the rat. 
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upper limits established in the small and large yards 
reflect an intrinsic property of rat stopping behavior, 
and possibly its interaction with the complexity of  en- 
vironment, but not its size. 

DISCUSSION 

There is a constraint on the maxhnal mtmber of  stops per 
excursion 

The special status of the home base in rat locomo- 
tor behavior in a novel environment has been estab- 
lished in previous work by focusing on the features of 
behavior hi that place 3. The relative stability of  this 
place suggested it as an appropriate reference place for 
the examination of  rat locomotor behavior throughout 
the environment. This examination revealed that the 
total number iof stops performed by any of the rats 
during an excursion - -  the trip between two successive 
stops at a home base - -  did not exceed (but for one 
case only) the total of 12 stops. Our attempt, in the 
second part of  the present study, to increase this num- 
ber by increasing the size of the testing environment 
revealed that although the upper limit on stopping var- 
ied from rat session to rat session, the distance covered 
by the rat had no significant effect on the upper limits 
average. A constraint on the maximal number of  stops 
per excursion has thus been demonstrated. 

The uniform distribution model accounts for the observed 
constraint on the maximal number of  stops 

To understand the nature of this constraint we ex- 
amined the frequency distribution(s) of  the number of 
stops per excursion. These numbers clearly do not clus- 
ter about a specific limit, nor do they cluster about each 
session's upper limit. Instead, we find that a rat per- 
forms excursions of varying sizes, spanning the entire 
range from no stop at all (in excursions between bases) 
to its maximal size. Therefore, we can not view this 
upper limit as a 'typical value', but continue to inves- 
tigate the distribution of  the number of stops per ex- 
cursion. The geometric distribution is also not an ap- 
propriate model for the number of stops, because these 
numbers do not show a trailing tail of ever decreasing 
frequencies. We are thus led to the uniform distribution 
over an individual session's range, which was indeed 
found to be an appropriate model for the number of 
stops, in each of the excursion types. It describes 
best the number of stops in round trips of one-base 
rats and in excursions between bases in two-base rats, 
and is a good model for the central part of the distri- 
bution of the number of stops in round trips of two-base 
rats. 

Two implications of  the unifornl distribution model 
Under this model a rat is equally likely to make one 

stop as it is to make k stops, as long as k is under the 
individual session's maximum. While this seems to be 
a very random behavior, it should be recalled that this 
is a very structured type of random behavior. First, 
explicit in the uniform distribution model is the exist- 
ence of a sharp upper limit. This is the only parameter 
which defines the entire distribution, and which obvi- 
ously does not depend on the number of excursions 
performed in the session. If the estimated upper limit 
is, say, 8, then 25~o of the excursions will include 1-2 
stops, another 2 5 ~  3-4  stops, etc. 

If, on the other hand, the uniform type of distribution 
has been established as the appropriate model, but the 
session's upper limit is unknown, it can be estimated 
right at the beginning of  the session. Suppose that two 
excursions have so far been performed, one of  6 stops 
and another of 3. Then, because under the uniform 
distribution these two observations are expected to di- 
vide the possible range to 3 equal parts, the estimated 
upper limit is 9. As additional data come in we shall 
update our estimate - -  but the target parameter re- 
mains fixed. In other distributions with finite range, 
other parameters might also need to be estimated and 
the methods may change, but the upper limit remains 
fixed. 

In contrast, distributions that serve as the 'typical 
value' model such as the normal and Poison, as well as 
the geometric distribution, do not have a deterministic 
upper limit: one may suggest a candidate for an upper 
limit, but it is a stochastic prediction, its definition 
should involve some probability statements, and what 
is even more disturbing, it will depend on the number 
of excursions to be performed by the rat - -  and thus 
be, in contrast to the uniform distribution upper limit, 
a 'moving target'. 

The second implication of the uniform distribution is 
that under this model the probability of returning to 
base after a stop increases after each stop, first slowly 
and then steeply. Consider for example a rat whose 
maximal number of stops in the session is 7. A priori 
it may return to base after 1,2,3.. or seven stops, each 
with equal probability. Suppose we observe the rat in 
an excursion where it has already made 4 Stops and has 
not yet returned to base. It may therefore return either 
at the next stop or after the 5th, 6th, or 7th stop. These 
4 ( = 7 - 4 + 1) possible outcomes are equally likely, they 
should sum to 1, and thus the probability of each is 1/4. 
In particular, the probability that the next stop is at 
base is a 1/4, recalling that it had not done so by the 
fourth stop. A similar argument shows that if the fifth 
stop too is not at base, the probability that the next stop 



is at base increases to 113. Casting the argument into 
the general case, the uniform probability model with 
upper bound R implies that given the observation that 
by the kth stop the rat has not yet returned to base, the 
probability that it would do so in the next stop is: 
Pr(next stop is at base I by the k's stop is not yet at 
base) = 1 / R -  ( k -  1). 

If we now view the probability that the next stop will 
be at base as a function of the number k of  stops it has 
so far performed, the probability is increasing in k, 
slowly for small k and fast for k close to R: the farther 
the rat is away from base - -  as measured by the num- 
ber of stops - -  the more likely it is to return to base at 
the next stop. In the extreme cases, if the upper limit is, 
say, 7, after 6 stops the probability of  returning to base 
at next stop is 1/2; if it continues to the 7th stop, k = R 
and the probability of returning to base is 1. 

A compelling!demonstration of  the upper bound phe- 
nomenon is observable when a rat happens to approach 
the upper bound range, i.e., perform 10 + 2 stops, all the 
while increasing its distance from its home base. Be- 
cause of  the rat's large distance from base, a naive 
observer famili~/rized with the home base phenomenon 
but not with the uniform model, intuitively expects it to 
perform several stops on the way back to base, spac- 
ing them with commonly observed interstop distances. 
In contrast, an observer having adopted the uniform 
distribution model expects the rat to progress contin- 
uously or almost continuously back to base, regardless 
of the distance to be traversed. As anyone having ac- 
cess to rats can check for himself in real time, it is this 
last prediction which is fulfilled. 

A comparison to the memoryless geometric model 
Compare this behavior to the memoryless random 

model for the behavior of the rat. Under that model, the 
probability of  returning to base at the next stop, given 
that the rat has not yet returned to base after k stops, 
is always constant m say p m regardless of the number 
of  stops k it has already performed, p reflects the rela- 
tive incidence of visits to the home base. Such model 
leads to the geometric distribution as the model for the 
number of stops per excursion, where the probability of  
observing an excursion of k stops is smaller by a fac- 
tor of p than the probability of observing an excursion 
of  k -  1 stops. 

Unlike the uniform distribution (as well as other dis- 
tributions with an upper bound), the geometric distri- 
bution does not have an intrinsic upper limit. However, 
the mere fact that an upper limit does seem to be ob- 
served is not enough to refute the geometric model: 
since under this model excursions are likely to be ter- 
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minated after each stop at an equal probability, the 
probability that the number of stops will exceed a cer- 
tain large value is negligible. Therefore, an apparent 
upper limit on the number of stops per excursion may 
be observed. 

The excursion is a particulate cunndative process havhlg 
a specific capacity 

To refute the possibility that the upper limit is only 
apparent, it was thus important to establish that the 
uniform distribution (or some other close distribution) 
is an appropriate model for the randomness of the num- 
ber of stops per excursion. Based on the demonstrated 
appropriateness of this model, it may be concluded that 
(i) the excursion is a natural particulate process of lo- 
comotor behavior in a novel environment, and (ii) the 
decision to return to base involves some cumulative 
process which we call, for want of other term, memory, 
related to the number of stops the rat has already per- 
formed after leaving the base. The capacity of this me- 
mory in a particular session is related to the rat's esti- 
mated maximal number of  stops per excursion in that 
session. Whereas the validation of the excursion as a 
distinct process could have also been reached had the 
'typical value' model been found appropriate, the con- 
elusion that the behavior displays some type of memory 
is specific to a model with an intrinsic upper bound. 
Once again, in the present context, the term memory 
merely expresses a cumulative property of the behavior, 
which could perhaps even be mediated by a simple 
cumulative physiological process correlated with the 
number of stops, without necessarily implying cogni- 
tion. (The involvement of  spatial memory in the excur- 
sion process is a different issue, implied by the fact 
that each of  the rats always returns at the end of each 
excursion to its own preselected home base. Because, 
in the same testing environment, base locations differ 
from rat to rat, a base must be established and re- 
membered, and not be selected de novo, at the end of 
every excursion, on the basis of its unique physical 
features3.) 

What is tire quantity l@ich is actually measured by the rat? 

(a) Nmnber of  stops vs. mlmber of  different places 
The ratio between the number of different places in 

which the rat stopped in an excursion, and the total 
number of stops perforfned in that excursion could be 
used as an indication of  the presumed amount of  nov- 
elty to which the rat exposed itself during that excur- 
sion. A low ratio would indicate repeated stops in the 
same places, which could mean a constraint on the 
amount of managed novel input per excursion. In the 
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present study, the number of stops was equal to the 
number of visited places in 9 0 ~  of the excursions; 
additional 7 ~o included one repeated visit to only one 
place. It may be concluded, therefore, that if the 
amount of novelty is managed at all by rats within 
excursions, then it is almost maximal for the given num- 
ber of stops. 

(b) Number of stops vs. cumulative duration of staying hz 
place and/or number of scanning movements 

The predictable increase in the attraction ofthe home 
base and the sharp upper bound, do not mean that the 
rat is actually 'counting' the number of stops it has 
performed. It might mean that the decision to return to 
base is mediated by some intervening quantity, corre- 
lated with stopping behavior, which is accumulated and 
'measured'. Stopping consists of  a cessation of forward 
progression, freezing and/or the performance of lateral 
and/or vertical scanning movements with some or all of 
the parts of  the trunk, while staying in place (see Ma- 
terials and M~thods), The types and number of these 
movements, and stopping durations, could be the quan- 
tities which are actually evaluated and 'updated' by the 
rat. 

The random aspect of the uniform model consists of 
the fact that within the range demarcated by the upper 
bound, the number of stops is unpredictable. This ran- 
domness could imply that the number of stops influ- 
ences, but does not determine directly the end of an 
excursion. For example, if longer stops or stops which 
include a high number of lateral and vertical scanning 
movements weigh more than their shorter counterparts 
in the decision to return to base, then few stops of the 
first type could be equivalent to many stops of the 
second'type, resulting in apparent randomness. While 
this specific hypothesis is unlikely because the number 
of scanning movements varies greatly across excur- 
sions, it could be that some types of scanning move- 
ment weigh more than others in a hypothetical process 
of measurement, thus influencing the relative weight of 
a stop. Alternatively, if stops are assumed to have equal 
weight, then the randomness would imply a freedom to 
return to base after any stop, as long as the number of 
stops has not exceeded the session's upper limit. Such 
freedom would be intrinsic to the rat's stopping behav- 
ior as long as the rat did not reach the individual ses- 
sion's maximum. For the time being, the intervening 
quantity hypothesis is. preferable, because it is both 
more conservative anal testable. 

Scaling of intersto.p distances across enviromnents 
On the glass pl~atform there was a positive correlation 

between the length of an excursion in meters, and the 

number of stops in that excursion (data not presented). 
This raised the question - -  would this correlation be 
maintained also if the length of an excursion in meters 
be 'stretched' beyond the range observed on the glass 
platform? When challenged with a very large environ- 
ment, will the rat increase the session's upper bound on 
stops while keeping the same average interstop dis- 
tance, or will it increase interstop distances without 
increasing the upper bound on stops? To answer this 
question we compared the farthest round trips (in terms 
of covered area) in the small and large outdoor yards. 
The average distance traversed in the large yard during 
the performance of the farthest round trips is 2.5 times 
longer than the distance traversed during the corre- 
sponding farthest round trips in the small yard (Fig. 9). 
But the corresponding averages of the maximal number 
of stops did not increase with the distance traversed. 
This implies that the rats must be using some scaling 
procedure which allows them to modify interstop dis- 
tances so as to fit stopping capacity to the size of the 
particular environment.  Just how this is done - -  
whether by increasing all interstop distances by a fixed 
ratio, or by modifying the size of particular inter- 
stop distances in the sequence - -  remains to be 
examined. 

Are upper limits hldividual-specific? 
The uniform model merely characterizes the type 

of the distribution, without specifying the value of 
its upper bound. This value might vary and indeed 
varies greatly, from one rat-session to the next. Fur- 
thermore, because each rat was tested only once in 
each environment, the fact that the upper bounds are 
not 'increasable' on average, by increasing the size of 
the area explored, does not tell us whether the esti- 
mated upper bound is specific for the rat in the partic- 
ular session or whether it characterizes the individual 
across sessions. This question can be solved by, e.g., 
examining the same individual rats across several novel 
environments. If the maximal number of stops is spe- 
cific to the individual, then variance of the same indi- 
vidual across environments should be smaller than 
variance across individuals exposed to the same envi- 
ronment. 

The effect of enviromnental complexity on stopphlg 
The median estimated maximal excursion sizes 

across the sessions of individual wild rats on the glass 
platform ranged between 6.9 and 9.6. In the hooded 
laboratory rats in the outdoor yards, the six median 
values of the six groups (three types of excursions in 
two outdoor yards; Fig. 8) ranged between 7.5 and 14. 
None of the differences between the glass platform and 



outdoor groups is significant. Nevertheless, the two 
outdoor yards, which were much richer in stimuli than 
the glass platform, seemed to increase the number of  
stops per excursion. Since the richness of  the environ- 
ment was but one of  the differences between the two 
parts of  the experiment, in future studies it would be 
necessary to examine the effect of  environmental com- 
plexity on home base attraction. The present study pro- 
vides a necessary baseline for the answer. 

Features of home base attraction and of excursion orga- 
nization 

In summary, in previous work home base attraction 
was established on the basis of parameters of behavior 
hz the home base and on the difference between the time 
spent and the number of stops performed during loco- 
motion away and locomotion back to base 3. In the 
present study we add another feature - -  the slow and 
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then fast mcrease in home base attraction with every 
additional stop,: and the existence of  an intrinsic upper 
bound on stops~ which does not increase with the size 
of the explored area. The features of  excursion organi- 
zation - -  type of distribution of number of stops per 
excursion, magfiitude of upper limits on stopping and 
on interstop distances, number of bases, and other fea- 
tures such as excursion time ~ can now be examined 
in other species and in lesioned and drugged rats. Dif- 
ferential modification of these parameters might not 
only provide new meaningful measures of brain/ 
behavior relations, but also highlight additional features 
of  excursion organization. 
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